News

£56m radiotherapy research network announced

Cancer Research UK has launched a new network called RadNet to form a global hub for radiotherapy research.

The hub will research the latest techniques such as FLASH radiotherapy and artificial intelligence, combining seven centres of excellence across the country: the Universities of Cambridge, Glasgow, Leeds, Manchester and Oxford, the Cancer Research UK City of London Centre (a partnership between UCL, Queen Mary University of London, King’s College London the Francis Crick Institute) and The Institute of Cancer Research, London in partnership with The Royal Marsden NHS Foundation Trust.

Michelle Mitchell, chief executive of Cancer Research UK, said “Radiotherapy is a cornerstone of cancer medicine, with around 3 in 10 patients receiving it as part of their primary treatment. The launch of our network marks a new era of radiotherapy research in the UK. Scientists will combine advances in our understanding of cancer biology with cutting-edge technology to make this treatment more precise and effective than ever before”.

The centres will spearhead the development of new techniques for delivering radiotherapy and investigate new radiotherapy-drug combinations, including immunotherapies. Scientists will also focus on reducing the long-term side effects associated with this treatment, improving patients’ quality of life during and after treatment.

Dr Adrian Crellin, Cancer Research UK Trustee and Former Vice-President of the Royal College of Radiologists, said: “I’ve seen first-hand how successful radiotherapy can be for patients that I treat, but it’s been frustrating to see the UK lagging behind other countries when it comes to prioritising research into this vital treatment. Cancer Research UK’s investment will overhaul radiotherapy research in the UK to bring the next generation of treatments to patients sooner.”

The innovative research that Cancer Research UK RadNet will deliver includes:

  • Exploring FLASH radiotherapy, where pulses of high-dose of radiation are delivered in a fraction of a second. Research so far suggests that FLASH has the potential to cause less damage to the healthy tissue surrounding the tumour than traditional radiotherapy, where tissues are exposed to lower doses of radiation over a longer period, often resulting in long-term side effects.
  • Further investigation into proton beam therapy – an innovative type of radiotherapy that uses beams of protons, instead of photons, to destroy cancer. This key difference means that when the heavier protons reach their carefully mapped out target, they come to a halt, delivering a powerful burst of radiation precisely where it’s needed. The Christie NHS Foundation Trust, in Manchester, is the first NHS hospital to provide high-energy proton beam therapy, with another centre to follow at University College London Hospitals NHS Foundation Trust next year. Cancer Research UK RadNet will support researchers across the country to optimise this new technology and maximise patient benefit.
  • Investigating ways to overcome hypoxia – low oxygen levels within tumours, resulting from rapid cancer growth that blood vessels can’t keep up with. Hypoxic tumours are far less susceptible to radiotherapy, as radiation interacts with oxygen to produce volatile molecules that help to destroy cancer. Scientists will develop better ways to identify hypoxic tumours and new treatments to oxygenate them, making radiotherapy much more powerful.
  • Investigating why some cancers come back after radiotherapy by studying the role of cancer stem cells. These cells are remarkably resistant to radiation, and just a few stem cells remaining after treatment can cause a patient’s cancer to come back.  For some patients, targeting stem cells could be the key to unlocking radiotherapy’s full potential.
  • Developing and testing drugs that could be used in combination with radiotherapy. This will include immunotherapies – treatments that exploit the power of the body’s immune system to fight cancer. They will also research how tumours are able to repair DNA damage caused by radiotherapy and use the latest gene-editing technology to develop drugs that interfere with this process.
  • Harnessing the power of artificial intelligence. Cancer Research UK RadNet researchers will use this technology to design personalised treatment plans guided by data from patients’ scans. This could improve the accuracy with which doctors deliver radiotherapy and provide new treatment options for patients whose tumours were once thought too risky to target with radiation.